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INTRODUCTION

A semiclassical study presented here indicates that a sufficiently

short and intense pulse can be much more effective in inducing a collisional
radiative transition than cw radiation or a long pulse, although the
intensity must not be too high because the Rabi oscillation can bring down
the probability. Foe the situation of a molecule physisorbed on a

crystalline surface and irradiated by a laser, a master equation approach,

used to describe the time evolution of the population of the vibrational

adbond levels, shows that for high intensities laser-induced vibrational

excitation is the same for pulsed and cw lasers.

GAS-PHASE MOLECULAR COLLISIONS

Most theoretical and experimental work in the past on the subject of
molecular collisions occurring in the presence of a laser field has been
concerned with the case in which the field consists of continuous wave (cw)

radiation. In this case the colliding molecules are influenced by the laser
radiation during both the incoming and outgoing trajectories. If, however,
the laser field consists of a pulse whose duratiy is sh; ter than the
collision time (for a typical collision time of 100 - 10 s, one must
have a (sub)picosecond pulse), only a part of the collision process occurs
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in the presence of the laser field. The outcome of the collision therefore
may be significantly diffarent depending whether the laser radiation is cw
or pulsed. The difference shows up strongly in particular for collision
processes involving an electronic tranTi~ion that occurs via curve crossing,
as we have shown in our earlier work. Below we give a brief description
of such a transition taking place in the presence of laser radiation, with
special attention to the effect of the temporal duration of the laser
radiation3  An experimental study of this effect has recently been
reported.

Let us consider an electric-dipole transition induced by collision that
occurs in the presence of laser radiation. Within the semiclassical two-
state formalism, the Schr6dinger equation yields the following coupled
equations for the probability amplitudes c1(t) and c 2 (t) for the two states
1 and 2 being considered:

dc (t) W
ii. dt H H11c1 + H1 2 c 2  (la)

dc2 (t)
i- Ht H 21 + H (2b)

where H11  and H 2  represent adiabatic potential curves in the dressed-
molecule representation for the two states 1 and 2 which, we assume, cross
at a certain internuclear distance R = R (i.e., H (R )-H..(R ) = 0), thecS 22 C 11

inter ction term H I is given by H112 - - i-i 0 /2, ; is the transition moment,
and I is the e ectric field amplitude of the laser radiation. The
transi~ion probability I - 2 is obtained by solving the coupled equations
(la) and (ib) with the initial conditions Ic (0)l - 1 and c (0) - 0. These
equations, however, cannot be solved analytically in geniral because the
matrix elements H vary with time in a complicated manner for a realistic
collision system. JOne therefore must rely on either approximate or
numerical solutions. Here we present results of approximate calculations
based on the Landau-Zener method along with results of numerical
calculations.

Perhaps the simplest approximate solution to Eqs. (I) is provided by
the Landau-Zener model. The model assumes that the transition is localized
in a narrow neighborhood of the crossing point R over which H 2 - H
varies linearly with R and H remains constant. The iransition proiability
as the system passes through 'he crossing point R is then given by

P - 1 - exp(-p) (2a)

where

p - 21r[H (Rc )] 2 /v)[l - (bk)2)1 (2b)
12 c

c

b is the impact parameter, I is the slope of 1H22 -H111 vs. R at R c, and v is
the relative velocity of the colliding partners at R . If the collision
occurs in the presence of a short pulse so that the system is illuminated on
the way in or out only, the transition probability is given by P - P. On
the other hand, if the system is illuminated both on the way in and out as
is the case for cw radiation or a long pulse, the transition probability is
given by P - 2P(l-P). To exhibit clearly the intensity dependence of thecv

transition probability, we note that p is proportional to I and let p - PI.
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Then the short-pulse probability and cw probability are given respectively

by

P 1 1 - exp(-OI) (3a)

Pcw 2 exp(-OI)[l-exp(-pI)] (3b)

where, for the case of a short pulse, a square pulse of intensity I is
assumed.

In Table 1 we give the Landau-Zener probabilities P8 4 and P fordifferent values of I and b for the case R c 9.5, v - 1.83xi0" , y =-9.002
and P - 3 (all quantities are expressed in atomic units), assuming that the
laser beam is linearly polarized in the direction of the relative velocity v
of the colliding partners and that the transition moment V is parallel to
the internuclear axis as in a E - I transition. The probability P w as a
function of the intensity I exhibits the well-known single-peak struciure of
the Landau-Zener model, whereas P monotonically increases with I. As a
result, P and P differ significantly at high I for which AI >> 1. Thus,
according C~o the8 Landau-Zener model, a short pulse can be much more
effective than cw radiation or a long pulse in inducing a transition, if the
pulse intensity is sufficiently high.

Table 1. The cw probability P and short-pulse probability P calculated
using the Landau-Zener model.s

b(a.u.) I(W/cm2 ) 108 Sx10 8  109 5X109 10SX1510 10  1011 5=1011

P 0.053 0.23 0.37 0.39 0.13 0.00 0.00 0.00
1 cw

P 0.027 0.13 0.24 0.74 0.93 1.00 1.00 1.00

P 0.045 0.20 0.33 0.43 0.18 0.00 0.00 0.005 cW

P 0.023 0.11 0.21 0.69 0.90 1.00 1.00 1.00

In order to check the accuracy of the data presented in Table 1, we
also have calculated the transition probability by numerically integrating

Eqs. (1). For this calculation, we have assumed that the potential curves
satisfy

22 -11 - 3 exp(-0.737R) - 0.0027 , (4)

which yields R - 9.5 and y - 0.002. We have also assumed a straight-line
constant velocity (-4 v) trajectory for simplicity of calculation and have
chosen v - 1.83 x 10 and P - 3, as before. The result of our calculation
is summarized in Table 2. Comparison of Tables 1 and 2 indicates that the
Landau-Zener model yields relatively accurate probabilities2 at low
intensities, but the model fails at high intensities (I > 10 W/cm ). This
is mainly due to the inability of the Landau-Zener model to correctly



describe Phe Rabi oscillation of the molecular system at a high laser
intensity. Since Ps1 1 decreases due to the Rabi oscillation as I is
increased beyond -10 W/cm , there is a finite range of the intensity over
which a short pulse is much more effectivothan iy radittion. For the model
system being considered, this range is 10 - 10 W/cm .

Table 2. The cv probability P and short-pulse probability P calculated
by numerical integratis of Eqs. (1).

b(a.u.) I(W/cm 2 10 8 5XlO 8 10 9 5XlO 9 10 10 Sx1O 10

PcW 0.056 0.24 0.39 0.39 0.21 0.15

Ps 0.029 0.14 0.27 0.73 0.88 0.92

5cP 0.034 0.17 0.28 0.41 0.13 0.13

P8  0.019 0.091 0.17 0.71 0.93 0.93

b(a u.) I(W/cm2) 10I11 5XlOII1 10 12 5xlO 12 10 13 3xlO 13

P 0.24 0.39 0.44 0.48 0.48 0.50cw

P5  0.86 0.73 0.68 0.60 0.61 0.54
s$

5cP 0.23 0.40 0.46 0.49 0.48 0.47

P3  0.87 0.72 0.64 0.58 0.61 0.63

In view of the recent experimental study3 of the short-pulse effect
considered here, we show in Table 3 the totil number N of transitions per
target atom per unit pulse energy, an experimentally tbservable quantity,
for different values of the pulse duration and intensity. Although this
quantity was obtained by integrating the Landau-Zener probability over
impact parameter, the data shown in the table is expected to be accurate
since the Landau-Zener model yields accurate probabilities at the values of
I considered here. As can be seen from the table, there 9is very little
difference between long and shortlopulsel at 10 - 10 W/cm . The
difference, however, shows up at 10 W/cm , as a noticable Jump in Nt is
seen in going from 10 to 1 ps (the collision time of the system being
considered is - 2.5 ps).

--
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Table 3. Total number of transitions per target atom per unit pulse energy
(in arbitrary units).

2 pulse
I(W/cm2) duration (ps) 1000 100 10 1 0.1

108 19.8 19.8 19.9 20.2 20.2

109 15.1 15.1 15.7 18.5 18.5

1010 1.45 1.57 2.81 8.75 8.84

In conclusion, the results of our calculations summarized in Tables 1,
2 and 3 indicate that a short pulse can be much more effective in inducing a
collisional radiative transition than cw radiation or a long pulse. This
short-pulse effect becomes significant if the pulse intensity is
sufficiently high that the probability of transition at the crossing point
is high (- 1). On the other hand, the intensity must not be too high
because the Rabi oscillation can bring down the probability to a low value
at an extremely high intensity.

ADBOND DYNAMICS L

Level Populations

We now turn to consider a molecule physisorbed on a crystalline surface
and irradiated by a laser. Due to the weak van der Waals bond, the
admolecule has a series of vibrational states for the motion perpendicular
to the surface. Under certain conditions it is reasonable to assume that a
laser, with frequency ., is in reasonance with only one pair of these
levels, say jg> and le).The transition frequency is w = w - W > 0; the
detuning is defined as A w w -w. Relaxation of theeIdbong occurs due to
its interaction with the lattice vibrations of the substrate. In the Markov
approximation, this is described through the occurrence of rate constants
an in a set of first-order differential equations for the level populations

coherences sf 6he reduced density operator of the adbond, the so-called
master equation.

For pulsed lasers with a pulse duration At short compared to the
relaxation times (- the inverse rate constants) of the adbond, the latter
can be neglected during the pulse. Then, 1 6 he time evolution during the
pulse is given by the optical Bloch equations,

dR Mt
dt A AR2 (t)

dR 2(t)

dt = ARI1t) + a pt)R 3(t) (5)

dR3 (t)
-Q (t)R

dt a - 2(t)R2

AI

- - - . ~ . .- .- .. i& 1- - - - - - - - - - - - - - - - -



where n (t) 4 1.1 (t)/A is the time-dependent Rabi frequency; •(t) I
n(t)cost t) is JKe electrij field amplitude of the laser, with slowly-

v2 rying eove ope (t); and u again is the transition dipole moment. The
real-valued quantities Ri are defined by the populations of and coherences
between the1 otwo adbond levels coupled by the laser, in the rotating frame,
according to

1 geo eg-
R2 - -i (P -P eg) (6)

R3 a Pe eP

The total exciting effect up to time t of a laser is characterized by

6(t) - I dt' n (t') (7)
W p

Here, we are only interested in the effect of a complete laser pulse, so
that the integral can be taken over a single pulse to give a time-
independent parameter 8. Let R*, R* and R* be the values just before the

2 3pu 5e. Then, for zero-detuning, ihe values right after the pulse are given
by

R1 (At) -

R(2t) - Ricos(e) + Rlsin(e) (8) 4

R3 (At) - Ricos(e) - Rlsin(e)

where the start of the pulse is taken as zero point of time, and At is the
pulse duration. We shall only consider the situation of maximal excitation,which is obtained for 0 = v, the so-called n-pulses.

Instead of a single pulse, we shall consider a series of equally spaced
it-pulses, with interval time t and pulse duration At << t . Assume that
the system is initially in thermkl equilibrium, i.e., R 0' R2 - 0 and R

R 3 (eq). Then, after a i-pulse, R1  and R are zero again, but R is
changed into its opposite: R3 (at) - ° R (eq3 . Between two consecutive3 3pulses the adbond evolves in time through its relaxation against ýh§ lattice
vibrations. This process can be described by a master equation. In the
present situation only the populations have to be considered. However,
unlike the coupling with the laser, transitions to and from all vibrational
states are possible. With the result of the laser pulse as initial
condition, the formal solution of the master equation is (At < t < tp).

P(t) - P(eq) + e-Wt {(At)- P(eq)) (9)
*I A - -

where W is the matrix formed by the transition rate constants ank and has
elements

W ank - a . (10)rnm nknm mn

k

_" ILK WW" $ *• . - .- . * .



9(t) is the vector formed by the populations P (t), and P(eq) refers to the
thermal equilibrium distribution, given by W P(Rq) : 0.

After a number of pulses have passed, the adbond will reach a quasi-
steady state, wherein the time evolution of the populations is the same in
each interval t (sea Fig. 1). Then, combining Eqs. (8) and (9), two sets

R J,
pt

Fig. 1. Schematic drawing of the time evolution of the level occupations for
a pulse sequence in the quasi-steady state. Curve a represents R3 ;
curve b gives P + P ; and curve c gives P for any other level n,
e or g e,

of equations are obtained, which together determine the unstants Pn(at) in
terms of the rate constants ank• and the interval time tp

-Wtl(tp) - '( + e P m(t) - P(eq)11)

Pn (tp) P n (at)= Pn (n * e,g)

P (tp) - P (at) = P0  (12)
p e (tgp P 9 t-

For a continuous wave laser, the Rabi-frequency is a constant, .
Now, the relaxation processes cannot be neglected during the interaction
with the laser. The rate constants ank give rise to additional terms in the

p * . . -,



optical BycV2 2equations, in a way analogous to their occurence in the master
equation. ' After some time a true steady state will be reached, in
which the populations are determined by

I a"nk -" n I nPk(') (n * e.g)

k k

r
a a)P(m si ( P (i)-P (a)(13)

k k -r! +26

Sa.ekP.(.) 1 & ekek() + 2 1 r22 2 (

k - +2k g " '

where reg - ){ask + agk), and the steady-state values are denoted by P(n

k

Pulsed Laser Versus Continuous Wave Laser

To compare the effect of a pulse train with the effect of a continuous
wave (cw) laser on the dynamics of some system, a criterion is needed to
compare both lasers. Below two possible criteria will be defined. First,
it is required that both lasers have equal average power. Because the Rabi-
frequency, Q(t), is proportional to the electric field of the laser, the
intensity is proportional t ?1 0 (t). Performing the time-average for a
series of v- ulses then gives:

-2 R21(Ut t2 (14)

A second possible criterion is toelyquire the average dissipation from both
lasers to be equal. This leads to

(P - r)/tp - (D 2 /r )(P (-) - P (-)) , (is)g e p cw eg g 0

where P, P, P (-) and P (-) follow from Eqs. (I)-(13).
g e g e

The efficiency of a pulsed laser over a cv laser to induce some process
(e.g., desorption or chemical reaction) will be different for each process.
Here we restrict ourselves to the effect on the population of "he upper one
of the two levels coupled by the lasf for a two-level system. A more
extensive discussion is given elsewhore. Let us define the efficiency c
as the ratio of the average excited level population P (av) under pulsed
laser irradiation to the steady state population P ta) under cw lasn
irradiation. For a two-level system, Eqs. (11)-(13) are easily solved.
We are interested in the situation where the laser-induced population is
substantially larger than the equilibrium thelal occupation of the levels.
Then, neglecting the latter, the efficiency is

S = 2 •1 -- rt 1 2 n2

2 1 )r + cw (16)

(0 + rtp) rt c2 (
cw

For a given integrated intensity oi Tne pulse, the average intensity of the
pulse train is proportional to t . Then a definition for a strong/weakp



pulsed laser it rjtp 1. Analogously a strong/weak continuous wave laser
is defined by (0a Ic) being much larger/smaller than one.

Using these definitions, it follows from Eq. (16) that E a 1 in the
strong laser limit. This can easily be understood when it is realized that
both for the pulsed laser and the cw laser the system is then continuously
driven into satiration (R3 w 0). Using criterion 1 (Eq. (14)) leads to

-rt r 2 + 20 2
V e rat (17)

1 + arItp r2 2

In the weak laser limit this gives c - rAt/%2 << 1, and thus c can be made
arbitrarily small by decreasing the pulse duration At. Thl explanation is
that the intensity of the pulsed laser is proportional to 0 at, whereis the
exciting effect is only proportional to 0 At. Decreasing Jl, while 0 at is
held constant, will decrease 0 At too. PFoi a cw laser both the intinsity
and the exciting effect are proportional to 0 • The latter can be regarded
as the limiting form of a pulsed laser with - , and therefore will give
the most efficient form of excitation.

For criterion 2, c - 1 is obtained, independent of the laser power.
This result reflects the fact that the energy flow into the substrate (is
absorbed energy) is proportional to Je1 jverage occupation of the excited
level and not on how P varies in time.'
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